Abstract

Hepatitis C virus (HCV) nucleoside inhibitors display pan-genotypic activity, a high barrier to the selection of resistant virus, and are some of the most potent direct-acting agents with durable sustained virologic response in humans. Herein, we report, the discovery of β-d-2'-Br,2'-F-uridine phosphoramidate diastereomers 27 and 28, as nontoxic pan-genotypic anti-HCV agents. Extensive profiling of these two phosphorous diastereomers was performed to select one for in-depth preclinical profiling. The 5'-triphosphate formed from these phosphoramidates selectively inhibited HCV NS5B polymerase with no inhibition of human polymerases and cellular mitochondrial RNA polymerase up to 100 μM. Both are nontoxic by a variety of measures and display good stability in human blood and favorable metabolism in human intestinal microsomes and liver microsomes. Ultimately, a preliminary oral pharmacokinetics study in male beagles showed that 28 is superior to 27 and is an attractive candidate for further studies to establish its potential value as a new clinical anti-HCV agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.