Abstract
Abstract Broad absorption-line (BAL) features in quasar spectra reveal an unambiguous signature of energetic outflows from central supermassive black holes, and thus, BAL quasars are prime targets for investigating the potential process of luminous quasar feedback on galaxies. We analyzed the rest-UV spectrum of an “overlapping trough” iron low-ionization broad absorption-line quasar (FeLoBAL) SDSS J135246.37+423923.5 using the novel spectral synthesis code SimBAL and discovered an extraordinarily fast and energetic BAL outflow. Our analysis revealed outflow velocities reaching with a velocity width of , which is the largest FeLoBAL outflow velocity measured to date. The column density of the outflow gas is log with the log kinetic luminosity (erg s−1), which exceeds the bolometric luminosity of the quasar and is energetic enough to effectively drive quasar feedback. The energy estimate for the outflow is far greater than the estimates from any BAL object previously reported. The object also shows “anomalous reddening” and a significant scattered component that we were able to model with SimBAL. We found the first definitive case for radiation filtering in an additional zero-velocity absorption component that required an absorbed continuum to produce the particular absorption lines observed (Mg ii, Al iii, and Al ii) without also producing the high-ionization lines such as C iv.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.