Abstract

We have investigated a sample of 2099 broad absorption line (BAL) quasars with z=1.7-2.2 built from the Sloan Digital Sky Survey Data Release Seven and the Wide-field Infrared Survey. This sample is collected from two BAL quasar samples in the literature, and refined by our new algorithm. Correlations of outflow velocity and strength with hot dust indicator (beta_NIR) and other quasar physical parameters, such as Eddington ratio, luminosity and UV continuum slope, are explored in order to figure out which parameters drive outflows. Here beta_NIR is the near-infrared continuum slope, a good indicator of the amount of hot dust emission relative to accretion disk emission. We confirm previous findings that outflow properties moderately or weakly depends on Eddington ratio, UV slope and luminosity. For the first time, we report moderate and significant correlations of outflow strength and velocity with beta_NIR in BAL quasars. It is consistent with the behavior of blueshifted broad emission lines in non-BAL quasars. The statistical analysis and composite spectra study both reveal that outflow strength and velocity are more strongly correlated with beta_NIR than Eddington ratio, luminosity and UV slope. In particular, the composites show that the entire C IV absorption profile shifts blueward and broadens as beta_NIR increases, while Eddington ratio and UV slope only affect the high and low velocity part of outflows, respectively. We discuss several potential processes and suggest that dusty outflow scenario, i.e. dust is intrinsic to outflows and may contribute to the outflow acceleration, is most likely. The BAL quasar catalog is available from the authors upon request.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.