Abstract

Overcoming the FLT3-ITD mutant has been a promising drug design strategy for treating acute myeloid leukemia (AML). Herein, we discovered a novel FLT3 inhibitor 17, which displayed potent inhibitory activity against the FLT3-ITD mutant (IC50 = 0.8 nM) and achieved good selectivity over c-KIT kinase (over 500-fold). Compound 17 selectively inhibited the proliferation of FLT3-ITD-positive AML cell lines MV4-11 (IC50 = 23.5 nM) and MOLM-13 (IC50 = 35.5 nM) and exhibited potent inhibitory effects against associated acquired resistance mutations. In cellular mechanism studies, compound 17 strongly inhibited FLT3-mediated signaling pathways and induced apoptosis by arresting the cell cycle in the sub-G1 phase. In in vivo studies, compound 17 demonstrated a good bioavailability (73.6%) and significantly suppressed tumor growth in MV4-11 (10 mg/kg, TGI 93.4%) and MOLM-13 (20 mg/kg, TGI 98.0%) xenograft models without exhibiting obvious toxicity. These results suggested that compound 17 may be a promising drug candidate for treating FLT3-ITD-positive AML.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.