Abstract

Cysteine-rich peptides (CRPs) are stable molecules that contain multiple disulphide bonds. Various CRPs are found in plants and animals, representing potential compounds for drug development with diverse activities. Modification of CRPs, such as glycation, has attracted increased attention due to its special structural and functional properties. Hence, this study explored a CRP isolated from the Chinese herb Achyranthes bidentata Blume, which contains a glycation modification. Herein, a reverse phase high-performance liquid chromatography system with mobile phases was used to extract and purify the peptide. The eluted peptide was detected using high resolution mass spectrometry and structurally identified using high resolution mass spectrometry and nuclear magnetic resonance. The effect of the peptide on the viability of N-methyl-D-aspartic acid (NMDA)-induced HT22 cells was determined using a cell assay. Here, a new cysteine-rich glycation peptide, termed glycation-bidentatide (Gly-BTP), with three pairs of disulphide bonds and a glycation modification at the N-terminus linked to cysteine, was discovered. Cell bioactivity assay results suggested that Gly-BTP might be a potential therapeutic and provide a neuroprotective effect in NMDA-induced HT22 murine hippocampal neuronal cells. The discovery of Gly-BTP will promote the understanding of the role of CRPs in neuroprotection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.