Abstract
Cysteine-rich peptides are valued as tags for biarsenical fluorophores and as environmentally important reagents for binding toxic heavy metals. Due to the inherent difficulties created by cysteine, the power of one-bead one-compound (OBOC) libraries has never been applied to the discovery of short cysteine-rich peptides. We have developed the first method for the synthesis, screening, and sequencing of cysteine-rich OBOC peptide libraries. First, we synthesized a heavily biased cysteine-rich OBOC library, incorporating 50% cysteine at each position (Ac-X8-KM-TentaGel). Then, we developed conditions for cysteine alkylation, cyanogen bromide cleavage, and direct MS/MS sequencing of that library at the single bead level. The sequencing efficiency of this library was comparable to a traditional cysteine-free library. To validate screening of cysteine-rich OBOC libraries, we reacted a library with the biarsenical FlAsH and identified beads bearing the known biarsenical-binding motif (CCXXCC). These results enable OBOC libraries to be used in high-throughput discovery of cysteine-rich peptides for protein tagging, environmental remediation of metal contaminants, or cysteine-rich pharmaceuticals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.