Abstract

Current research suggests therapy-induced senescence (TIS) of cancer cells characterized by distinct morphological and biochemical phenotypic changes represent a novel functional target that may enhance the effectiveness of cancer therapy. In order to identify novel small-molecule inducers of cellular senescence and determine the potential to be used for the treatment of melanoma, a new method of high-throughput screening (HTS) and high-contents screening (HCS) based on the detection of morphological changes was designed. This image-based and whole cell-based technology was applied to screen and select a novel class of antiproliferative agents on cancer cells, 4H-chromeno[2,3-d]pyrimidin-4-one derivatives, which induced senescence-like phenotypic changes in human melanoma A375 cells without serious cytotoxicity against normal cells. To evaluate structure-activity relationship (SAR) study of 4H-chromeno[2,3-d]pyrimidin-4-one scaffold starting from hit 3, a focused library containing diversely modified analogues was constructed and which led to the identification of 38, a novel compound to have remarkable anti-melanoma activity invitro with good metabolic stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call