Abstract

Yarrowia lipolytica, a GRAS (generally recognized as safe) nonconventional yeast, has been used widely in industrial fermentation to produce chemicals, fuels, and functional sugars such as erythritol and mannitol. Although Y. lipolytica is a promising organism for bioconversion and has substantial potential in industrial production, its utilization is restricted by the high cost of cooling during the fermentation process; the optimum growth or fermentation temperature of Y. lipolytica is 28–30 °C, which is lower than that of some fermenting species. Therefore, it is necessary to breed a thermoresistant Y. lipolytica for use in a fermentation system. Here, we report a new thermoduric Y. lipolytica strain (a thermoresistant clone, HRC) that can grow at 35 °C—higher than the starting strain Y. lipolytica CGMCC7326 (maximum growth temperature at 33 °C)—by laboratory adaptive evolution. Based on the transcriptome analysis of the mutant strain HRC and the parental strain Y. lipolytica CGMCC7326 at different temperatures, 22 genes with increased expression at high temperatures were identified and 10 of them were overexpressed in Y. lipolytica CGMCC7326. HRC1, HRC2, and HRC3 (with YALI0B21582g, YALI0C13750g, and YALI0B10626g overexpressed, respectively) were assessed for growth at higher temperatures. This revealed that these three genes were related to thermotolerance. This study provides insights into the metabolic landscape of Y. lipolytica under heat stress, enabling future metabolic engineering endeavors to improve both thermoresistance and sugar alcohol production in the yeast Y. lipolytica.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call