Abstract

People's personal social networks are big and cluttered, and currently there is no good way to automatically organize them. Social networking sites allow users to manually categorize their friends into social circles (e.g., “circles” on Google+, and “lists” on Facebook and Twitter). However, circles are laborious to construct and must be manually updated whenever a user's network grows. In this article, we study the novel task of automatically identifying users' social circles. We pose this task as a multimembership node clustering problem on a user's ego network, a network of connections between her friends. We develop a model for detecting circles that combines network structure as well as user profile information. For each circle, we learn its members and the circle-specific user profile similarity metric. Modeling node membership to multiple circles allows us to detect overlapping as well as hierarchically nested circles. Experiments show that our model accurately identifies circles on a diverse set of data from Facebook, Google+, and Twitter, for all of which we obtain hand-labeled ground truth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.