Abstract

The goal of viral marketing is that, by the virtue of mouth to mouth word spread, a small set of influential customers can influence more customers. Influence maximization (IM) task is used to discover such influential nodes (or customers) from a social network. Existing algorithms for IM adopt Greedy and Lazy forward optimization approaches which assume only positive influence among users and availability of influence probability, the probability that a user is influenced by another.In this work, we propose the T-GT model, which considers both positive (trust) and negative (distrust) influences in social trust networks. We first compute positive and negative influences by mining frequent patterns of actions performed by users. Then, a local search based algorithm called mineSeedLS for node add, exchange and delete operations, is proposed to discover influential nodes from trust networks. Experimental results shows that our approach outperforms Greedy based approach by about 35%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.