Abstract

Wavelength-tuning interferometry can measure surface shapes with discontinuous steps using a unit of synthetic wavelength that is usually larger than the step height. However, measurement resolution decreases for large step heights since the synthetic wavelength becomes much larger than the source wavelength. The excess fraction method with a piezoelectric transducer phase shifting is applied to two-dimensional surface shape measurements. Systematic errors caused by nonlinearity in source frequency scanning are fully corrected by a correlation analysis between the observed and calculated interference fringes. Experiment results demonstrate that the determination of absolute interference order gives the profile of a surface with a step height of 1 mm with an accuracy of 12 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call