Abstract

Modern superconducting intermetallic materials (e.g. NbTi, Nb3Sn) are used to build conductors composed of a matrix and the superconductor strands. One of the most popular materials for matrix is copper, because of its excellent physical and mechanical properties at extremely low temperatures. Ductile OFE copper stabilizes, on one hand, the mechanical response of brittle superconductor strands and, on the other hand, takes over the electrical charge in case of quench (resistive transition). Thus, the composite structure of modern conductors used to build the coils of superconducting magnets is fully justified. Such a composite structure results in common deformation of the matrix and the strands when winding the coils and during the operation, when the coils are subjected to the prestress and to the Lorentz forces at extremely low temperatures (liquid or superfluid helium). When the loads are large enough, the copper-superconductor strands composite is subjected to inelastic deformation, including moderately large plastic strains. It is known, that copper and superconductor strands exhibit the so-called discontinuous plastic flow (DPF) at extremely low temperatures, that results in abrupt drops of stress against strain of different amplitude and frequency. In order to describe correctly the behaviour of composite superconductors at extremely low temperatures, a constitutive model of DPF has been developed and applied to both components: matrix and strands. The results of numerical analysis are compared with the experiments, carried out in dedicated cryostat containing liquid helium and the relevant instruments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call