Abstract

We devise and analyze a class of the primal discontinuous Galerkin methods for magnetic advection-diffusion problems based on the weighted-residual approach. In addition to the upwind stabilization, we explore some terms related to convection under the vector case that provides more flexibility in constructing the schemes. Under a degenerate Friedrichs system, we show the stability and optimal error estimate, which boil down to two ingredients – the weight function and the special projection – that contain information of advection. Numerical experiments are provided to verify the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.