Abstract
The hydraulic conductivity of a confined aquifer is estimated using the quasi-linear geostatistical approach (QLGA), based on measurements of dependent quantities such as the hydraulic head or the arrival time of a tracer. This requires the solution of the steady-state groundwater flow and solute transport equations, which are coupled by Darcy's law. The standard Galerkin finite element method (FEM) for the flow equation combined with the streamline diffusion method (SDFEM) for the transport equation is widely used in the hydrogeologists' community. This work suggests to replace the first by the two-point flux cell-centered finite volume scheme (CCFV) and the latter by the Discontinuous Galerkin (DG) method. The convection-dominant case of solute (contaminant) transport in groundwater has always posed a special challenge to numerical schemes due to non-physical oscillations at steep fronts. The performance of the DG method is experimentally compared to the SDFEM approach with respect to numerical stability, accuracy and efficient solvability of the occurring linear systems. A novel method for the reduction of numerical under- and overshoots is presented as a very efficient alternative to local mesh refinement. The applicability and software-technical integration of the CCFV/DG combination into the large-scale inversion scheme mentioned above is realized. The high-resolution estimation of a synthetic hydraulic conductivity field in a 3-D real-world setting is simulated as a showcase on Linux high performance computing clusters. The setup in this showcase provides examples of realistic flow fields for which the solution of the convection-dominant transport problem by the streamline diffusion method fails.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have