Abstract

In pressure vessels the centre lines of the cylinder and dome portions often do not coincide thereby leading to a discontinuity at their junction. Structural analysis of such a structure assuming the centrelines of the cylinder and dome portions to be coincident leads to an incorrect estimation of stress and displacement distributions around the discontinuity. To predict accurately the stress and displacement distributions around the discontinuity, an iterative finite element scheme is developed in this paper using a conical shell finite element. The method is applied to two typical pressure vessels, one with hemispherical end domes and the other with ellipsoidal end domes. It is found that the solution converges in a few iterations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.