Abstract
The hot deformation behavior and microstructure of Fe-12.5Cr–4Al–2Mo-0.03Nb-0.08Y alloy were studied under conditions of 800 °C–1200 °C/0.01 s−1∼10 s−1 using a combination of hot compression experiments, EBSD and TEM characterization. The results indicate that the deformation temperature and strain rate have a significant impact on the flow stress and microstructure of the alloy, especially the deformation temperature. The constitutive equation constructed in this paper can reflect the hot deformation process and accurately calculate flow stress value of the FeCrAl alloy in corresponding states. The FeCrAl alloy undergoes DRV and DRX during hot deformation. DDRX grains distributed along the original grain boundaries mainly formed at low deformation temperatures and high strain rates, while CDRX grains mainly formed at high deformation temperatures and low strain rates and characterized by the internal distribution of the original grains. Moreover, the orientation of DDRX grains is mostly different from that of adjacent original grains, while the orientation of CDRX grains is relatively close to that of the original grains.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have