Abstract

The structure of ledges in otherwise symmetrical tilt boundaries built from atomistic simulations is investigated in copper in terms of continuous dislocation and generalized disclination fields. A ″discrete-to-continuum” crossover method is used to build the relevant kinematic and defect density fields on the basis of discrete atomic displacements appropriately defined in the boundary area. The resulting structure of incompatibility is compared with the so-called disconnection model of boundary ledges. In addition to their dislocation content, which characterizes the elastic displacement discontinuity across the boundary, the ledges appear to be characterized by discontinuities of the elastic rotation and dilatation fields, which are reflected by non-vanishing generalized disclination density fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.