Abstract
AbstractHerein, we report the synthesis of preformed bimetallic Pd‐Au nanoparticles supported on carbon nanofibers with different Pd : Au atomic ratio (nominal molar ratio: 8–2, 6–4, 4–6, 2–8) and the corresponding Pd and Au monometallic catalysts by sol immobilization method. The obtained materials were characterized thoroughly by Transmission Electron Microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectroscopy (ICP‐OES). The catalytic performances of the Pd‐Au catalysts were evaluated in the aqueous phase dehydrogenation of formic acid (FA) at room temperature obtaining enhanced activity, stability and selectivity compared to the monometallic systems. In particular, Pd6Au4 and Pd8Au2 showed the best combination of catalytic properties, i. e., high selectivity to H2 and improved catalytic stability. Density functional theory (DFT) calculations on Pd15, Au15 and Pd9Au6 clusters supported on a carbon sheet were then simulated to provide atomic level understanding to the beneficial effect of gold observed in the experimental results. Au15 barely adsorb FA, while Pd15 possesses an adsorption energy higher than Pd9Au6. Dehydrogenation and dehydration pathways were followed on all these models. For Pd9Au6, the most favourable route was the formation of carbon dioxide and hydrogen. Analysis of the electronic structures was also performed on the different models showing a stronger interaction between the bimetallic system and the support proving the alloy superior stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.