Abstract

The unambiguous characterization of the coordination chemistry of nanocrystal surfaces produced by wet-chemical synthesis presently remains highly challenging. Here, zinc oxide nanocrystals (ZnO NCs) coated by monoanionic diphenyl phosphate (DPP) ligands were derived by a sol-gel process and a one-pot self-supporting organometallic (OSSOM) procedure. Atomic-scale characterization through dynamic nuclear polarization (DNP-)enhanced solid-state NMR (ssNMR) spectroscopy has notably enabled resolving their vastly different surface-ligand interfaces. For the OSSOM-derived NCs, DPP moieties form stable and strongly-anchored μ2 - and μ3 -bridging-ligand pairs that are resistant to competitive ligand exchange. The sol-gel-derived NCs contain a wide variety of coordination modes of DPP ligands and a ligand exchange process takes place between DPP and glycerol molecules. This highlights the power of DNP-enhanced ssNMR for detailed NC surface analysis and of the OSSOM approach for the preparation of ZnO NCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.