Abstract
As a novel microfabrication method, electrochemical discharge machining has remarkable effects on the forming and processing of brittle and hard materials and non-conductive materials, but little research has been done on the electrochemical discharge mode in the jet state. To fulfil the potential of this technology, innovative research on the discharge characteristics and mechanism of electrochemical discharge machining in the jet mask is proposed. A high-speed camera observation experiment was set up to record the process of the jet flow column discharge formation and penetration. Changes in the electric field of the electrolytic jet channel were analysed by simulation software, and the morphology of the machined micro-pits was observed using a microscope. A mathematical derivation of the dielectric electric field in the gas–liquid two-phase jet column reveals the mechanism of discharge channel formation in the jet state. The experiments show that when the processing voltage is 400 V, a stable continuous spark appears, realizing the unique characteristics of a large-gap long-distance discharge and a flat small circle-shaped discharge mark produced at the bottom of the crater. The actual field strength within the bubble of this model obtained by mathematical derivation is approximately 61.5 kV/cm greater than the critical field strength for air bubble breakdown in the standard state, where bubble breakdown occurs in the discharge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.