Abstract

Given an admissible measure µon oΩ where Ω ⊂ ℝ n is an open set, we define a realizationA µ of the Laplacian in L 2 (12) with general Robin boundary conditions and we show that Aµ generates a holomorphic C 0-semigroup on L2(Ω) which is sandwiched by the Dirichlet Laplacian and the Neumann Laplacian semigroups. Moreover, under a locality and a regularity assumption, the generator of each sandwiched semigroup is of the form Δµ. We also show that if D(Δµ) contains smooth functions, then µ is of the form dµ=βbσ(where σ is the (n — 1)-dimensional Hausdorff measure and β a positive measurable bounded function on ∂Ω); i.e. we have the classical Robin boundary conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.