Abstract

Directional spectral emittance of an absorbing and scattering isothermal system of packed spheres is predicted by a radiative model based on the discrete ordinates method. Radiative properties for the bed of packed opaque spheres are obtained using geometric optics laws corrected with a scaling factor to take into account the dependent scattering. This model requires the knowledge of several parameters. Particle diameter and porosity can be easily obtained, but particle hemispherical spectral reflectivity is very difficult to obtain a priori. This particle reflectivity is determined by an identification method (Gauss method of linearization) applied to bidirectional spectral reflectance data obtained from an experimental device using a Fourier transform infrared spectrometer. Directional spectral emittance is measured using a direct radiometric technique that has been recently proposed. For a system of packed opaque spheres at high temperature, good agreement is observed between experimental results of directional spectral and computed theoretical data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.