Abstract
Purpose of the work is to identify the directional coupling between the structures of the brain and the autonomic control of the heart rate variability, to analyze the changes in these coupling in sleep and in wakefulness. Infra-slow oscillations of the electroencephalograms potential and low-frequency components (0.04-0.15 Hz) of the interbeat intervals signal where analyzed using a sensitive method for identifying the directional coupling. The technique, based on modeling the dynamics of instantaneous phases of oscillations, made it possible to reveal the presence and quantify the directional couplings between the structures of the brain and the autonomic control of the heart rate variability. It was shown that the coupling coefficients in the frequency band of 0.04-0.15 Hz (associated mainly with sympathetic control of blood circulation), on average, decrease with falling asleep. We have also shown the asymmetry of coupling. At the same time, stronger connections were revealed in the direction from the autonomic control of the heart rate variability to the brain structures than in the opposite direction. It has been shown that the strength of such couplings decreases with increasing of sleep depth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.