Abstract

The magnetic and velocity field fluctuations in magnetohydrodynamic turbulence can be characterized by their directional alignment and induced electric field. These manifest as coherent spatial correlations which are measures of Alfvenicity and turbulence cascade strength, respectively. Solar wind observations and direct numerical simulations find that these distinctive correlations, caused by rapid relaxation processes that act to suppress nonlinearity, occur in localized spatial patches. This cellularization of magnetofluid turbulence is inconsistent with a superposition of Gaussian fields and could be related to spatial intermittency or other non-Gaussian statistics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.