Abstract

AbstractIn mean‐field magnetohydrodynamics the mean electromotive force due to velocity and magnetic‐field fluctuations plays a crucial role. In general it consists of two parts, one independent of and another one proportional to the mean magnetic field. The first part may be nonzero only in the presence of mhd turbulence, maintained, e.g., by small‐scale dynamo action. It corresponds to a battery, which lets a mean magnetic field grow from zero to a finite value. The second part, which covers, e.g., the α effect, is important for large‐scale dynamos. Only a few examples of the aforementioned first part of the mean electromotive force have been discussed so far. It is shown that a mean electromotive force proportional to the mean fluid velocity, but independent of the mean magnetic field, may occur in an originally homogeneous isotropic mhd turbulence if there are nonzero correlations of velocity and electric current fluctuations or, what is equivalent, of vorticity and magnetic field fluctuations. This goes beyond the Yoshizawa effect, which consists in the occurrence of mean electromotive forces proportional to the mean vorticity or to the angular velocity defining the Coriolis force in a rotating frame and depends on the cross‐helicity defined by the velocity and magnetic field fluctuations. Contributions to the mean electromotive force due to inhomogeneity of the turbulence are also considered. Possible consequences of the above findings for the generation of magnetic fields in cosmic bodies are discussed (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call