Abstract

In Taylor–Couette systems, waves, e.g. spirals and wavy vortex flow, typically rotate in the same direction as the azimuthal mean flow of the basic flow which is mainly determined by the rotation of the inner cylinder. In a combined experimental and numerical study we analysed a rotating wave of a one-vortex state in small-aspect-ratio Taylor–Couette flow which propagates either progradely or retrogradely in the inertial (laboratory) frame, i.e. in the same or opposite direction as the inner cylinder. The direction reversal from prograde to retrograde can occur at a distinct parameter value where the propagation speed vanishes. Owing to small imperfections of the rotational invariance, the curves of vanishing rotation speed can broaden to ribbons caused by coupling between the end plates and the rotating wave. The bifurcation event underlying the direction reversal is of higher codimension and is unfolded experimentally by three control parameters, i.e. the Reynolds number, the aspect ratio, and the rotation rate of the end plates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call