Abstract

Inspiratory holds with measures of airway pressure to estimate driving pressure (elastic work) are often limited to patients without respiratory effort. We sought to evaluate if measures of airway pressure during inspiratory holds could be used for patients with spontaneous respiratory effort during mechanical ventilation to estimate the degree of spontaneous effort and elastic work. We compared the direction and degree of change in airway pressure during inspiratory holds versus esophageal pressure through secondary analysis of physiologic data. ICUs at Children's Hospital Los Angeles. Children with pediatric acute respiratory distress syndrome with evidence of spontaneous respiration while on pressure control or pressure support ventilation. Inspiratory hold maneuvers. From airway pressure, we defined "plateau - peak pressure" as Pmusc, index, which was divided into three categories for analysis (< -1 ["negative"], between -1 and 1 ["neutral"], and > 1 cm H2O ["positive"]). A total of 30 children (age 36.8 mo [16.1-70.3 mo]) from 65 study days, comprising 118 inspiratory holds were included. Pmusc, index was "negative" in 29 cases, was "neutral" in 17 cases, and was "positive" in 72 cases. As Pmusc, index went from negative to neutral to positive, there was larger negative deflection in esophageal pressure -5.0 (-8.2 to 1.9), -5.9 (-7.6 to 4.3), and -10.7 (-18.1 to 7.9) cm H2O (p < 0.0001), respectively. There was a correlation between max negative esophageal pressure and Pmusc, index (r = -0.52), and when Pmusc, index was greater than or equal to 7 cm H2O, the max negative esophageal pressure was greater than 10 cm H2O. There was a stronger correlation between Pmusc, index and markers of elastic work from esophageal pressure (r = 0.84). The magnitude of plateau minus peak pressure during an inspiratory hold is correlated with the degree of inspiratory effort, particularly for those with high elastic work. It may be useful to identify patients with excessively high effort or high driving pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call