Abstract

The application range of man-made cellulosic fibers is limited by the absence of cost- and manufacturing-efficient strategies for anisotropic hierarchical functionalization. Overcoming these bottlenecks is therefore pivotal in the pursuit of a future bio-based economy. Here, we demonstrate that colloidal silica nanoparticles (NPs), which are cheap, biocompatible and easy to chemically modify, enable the control of the cross-sectional morphology and surface topography of ionic liquid-spun cellulose fibers. These properties are tailored by the silica NPs’ surface chemistry and their entry point during the wet-spinning process (dope solution DSiO2 or coagulation bath CSiO2). For CSiO2-modified fibers, the coagulation mitigator dimethylsulphoxide allows for controlling the surface topography and the amalgamation of the silica NPs into the fiber matrix. For dope-modified fibers, we hypothesize that cellulose chains act as seeds for directed silica NP self-assembly. This results for DSiO2 in discrete micron-sized rods, homogeneously distributed throughout the fiber and for glycidoxy-surface modified DSiO2@GLYEO in nano-sized surface aggregates and a cross-sectional core-shell fiber morphology. Furthermore, the dope-modified fibers display outstanding strength and toughness, which are both characteristic features of biological biocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.