Abstract

With tens of thousands Low Earth Orbit (LEO) satellites covering Earth, LEO satellite networks can provide coverage and services that are otherwise not possible using terrestrial communication systems. The regular and dense LEO satellite constellation also provides new opportunities and challenges for network architecture and protocol design. In this paper, we propose a new routing strategy named Directed Percolation Routing (DPR), aiming to provide Ultra-Reliable and Low-Latency Communication (URLLC) services over long distances. Given the long propagation delay and uncertainty of LEO communication links, using DPR, each satellite routes a packet over several Inter-Satellite-Links (ISLs) towards the destination, without relying on link-layer retransmissions. Considering the link redundancy overhead and delay/reliability tradeoff, DPR can control the size of percolation. Using the Starlink as an example, we demonstrate that with the proposed DPR, the inter-continent propagation delay can be reduced by about 4 to 21 ms, while the reliability can be several orders higher than single-path optimal routing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call