Abstract

It is proposed to identify a strong electric field - created during relativistic collisions of asymmetric nuclei - via the observation of pseudorapidity and transverse momentum distributions of hadrons with the same mass but opposite charge. The results of detailed calculations within the Parton-Hadron String Dynamics (PHSD) approach for the charge-dependent directed flow $v_1$ are presented for semi-central Cu+Au collision at $\sqrt{s_{NN}}=200$ GeV incorporating the inverse Landau-Pomeranchuk-Migdal (iLPM) effect, which accounts for a delay in the electromagnetic interaction with the charged degree of freedom. Including the iLPM effect we achieve a reasonable agreement of the PHSD results for the charge splitting in $v_1(p_T)$ in line with the recent measurements of the STAR Collaboration for Cu+Au collisions at $\sqrt{s_{NN}}=200$ GeV while an instant appearance and coupling of electric charges at the hard collision vertex overestimates the splitting by about a factor of 10. We predict that the iLPM effect should practically disappear at energies of $\sqrt{s_{NN}} \approx$9 GeV, which should lead to a significantly larger charge splitting of $v_1$ at the future FAIR/NICA facilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.