Abstract

AbstractThe directed assembly of ordered arrays of cubic silver nanoparticles featuring distinct electrical threshold‐switching characteristics is reported. Threshold selectors are key elements for nonvolatile resistive random‐access‐memory architectures, as they suppress sneak path currents in crosspoint arrays. Nanocubes are site‐selectively immobilized on a TiO2‐coated silicon surface via a complementary molecular surface functionalization of nanoparticles and substrate based on a Cu(I)‐catalyzed alkyne‐azide cycloaddition without any physical template. Electrical characterization of individual silver nanocubes by conductive‐probe atomic force microscopy reveals pronounced and reproducible threshold‐switching behavior, featuring ultralow OFF currents below 1 pA, steep turn‐on slopes of <50 mV dec−1 and ON‐OFF ratios in excess of 103. Numerical simulation of Ag‐ion migration dynamics in the TiO2 electrolyte using a kinetic Monte Carlo model supports a switching mechanism based on conductive filament formation from Ag nanoclusters, and their reversible rupture in the low‐voltage regime. Assembled Ag nanocube threshold selectors are proposed for applications in memristive memory architectures, in particular for future highly integrated 3D circuitry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.