Abstract

AbstractThe convergence of electronics and photonics is attracting attention for its potential to surpass performance limitations of existing information‐processing devices. In particular, the electro‐optic (EO) effect plays a critical role in high‐speed and low‐power conversion between electrical and optical signals, which is demanded for future communication networks. Here, a novel class of EO material is demonstrated, the organic ferroelectric crystal of croconic acid (CRCA). The recently developed birefringence field‐modulation imaging technique enables high‐throughput evaluation of the EO coefficient for as‐grown bulk crystals, unveiling a figure of merit of >400 for CRCA, which exceeds that of 320 in the conventional EO material LiNbO3 in the visible‐light range. Analyses in conjunction with theoretical calculations clarify that its remarkable EO performance is attributable to deformation of the π‐orbital coupled with the proton displacement. This finding provides a new route for the molecular design of high‐performance EO materials: proton–π‐electron‐coupled ferroelectrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.