Abstract
In this paper we deal with several classes of simple games; the first class is the one of ordered simple games (i.e. they admit of a complete desirability relation). The second class consists of all zero-sum games in the first one. First of all we introduce a “natural” partial order on both classes respectively and prove that this order relation admits a rank function. Also the first class turns out to be a rank symmetric lattice. These order relations induce fast algorithms to generate both classes of ordered games. Next we focus on the class of weighted majority games withn persons, which can be mapped onto the class of weighted majority zero-sum games withn+1 persons. To this end, we use in addition methods of linear programming, styling them for the special structure of ordered games. Thus, finally, we obtain algorithms, by combiningLP-methods and the partial order relation structure. These fast algorithms serve to test any ordered game for the weighted majority property. They provide a (frequently minimal) representation in case the answer to the test is affirmative.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ZOR Zeitschrift f�r Operations Research Methods and Models of Operations Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.