Abstract

Constructing heterostructures can facilitate photoinduced charge separation, leading to enhanced photocatalytic performance. However, spatial separation of charge carriers in traditional type II heterojunctions is at the expense of their redox ability. In this paper, well-designed direct Z-scheme systems (ZSS) of p-CuAl2O4/n-Bi2WO6 composite nanofibers with uniform non-woven web nanostructure was built by electrospinning technique and solvothermal reactions. The formation mechanism of the ZSS and the charge migration pathway is investigated in detail. Results show that as-prepared composite nanofibers exhibit desirable photocatalytic performance for overall water splitting due to its stronger redox power and efficient charge separation. Meantime, it shows great activity for photodegradation of various organic pollutant models (RhB, MO, 4-NP), which is 1 order of magnitude higher than the single-component CuAl2O4 and Bi2WO6. Furthermore, the composite nanofibers exhibit well separable properties by natural sedimentation because of its ultra-long and non-woven web nanostructure. The paper explores CuAl2O4 and its Z-scheme heterostructures in water splitting for the first time, which may highlight its new applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call