Abstract

Simultaneous detection of multiple biomarkers, such as extracellular signaling molecules, is a critical aspect in disease profiling and diagnostics. Precise positioning of antibodies on surfaces, especially at the micro- and nanoscale, is important for the improvement of assays, biosensors, and diagnostics on the molecular level, and therefore, the pursuit of device miniaturization for parallel, fast, low-volume assays is a continuing challenge. Here, we describe a multiplexed cytokine immunoassay utilizing electron beam lithography and a trehalose glycopolymer as a resist for the direct writing of antibodies on silicon substrates, allowing for micro- and nanoscale precision of protein immobilization. Specifically, anti-interleukin 6 (IL-6) and antitumor necrosis factor alpha (TNFα) antibodies were directly patterned. Retention of the specific binding properties of the patterned antibodies was shown by the capture of secreted cytokines from stimulated RAW 264.7 macrophages. A sandwich immunoassay was employed using gold nanoparticles and enhancement with silver for the detection and visualization of bound cytokines to the patterns by localized surface plasmon resonance detected with dark-field microscopy. Multiplexing with both IL-6 and TNFα on a single chip was also successfully demonstrated with high specificity and in relevant cell culture conditions and at different times after cell stimulation. The direct fabrication of capture antibody patterns for cytokine detection described here could be useful for biosensing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call