Abstract

Structured surface of flexible substrate could generate a positive impact on flexibility of metal electrode due to the surface free energy relaxation, which could make the flexibility of metal electrode meet the performance requirement of flexible electronics. However, the preparation of controllable structured surface of flexible substrate is still a tough and challenge process. In this research work, controllable concave surface of flexible substrate was prepared by direct-write print with a viscoelastic substrate. When the controllable concave surface of flexible substrate was evaporated with a nanoscale metal layer, various metal electrodes could be obtained with a controllable morphology of concave surface. The direct-write printed concave surface efficiently enhanced the flexibility of metal electrodes. When the prepared concave surface generated a continuous connected structure with a 0.1 mm printing space, an excellently enhanced flexibility of metal electrode was achieved with an internal bending flexibility of 93.72%, external bending flexibility of 93.67%, stretchability of 85% and number of stable cyclic bending times over 12,000. Meanwhile, the direct-write printed concave surface generated a reversed convex surface, which could be used for pressure sensing as a flexible pressure sensor. Therefore, this research work provides an efficient method for fabricating flexible electrode, which has important research and application value in the area of high-performance flexible electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call