Abstract

When a crystal incorporates more impurity per unit of its volume than the impurity concentration in solution, the solution in vicinity of the growing crystal is depleted with respect to the impurity I,2. With a stagnant solution, e. g. in microgravity or gels, an impurity depletion zone expands as the crystal grows and results in greater purity in most of the outer portion of the crystal than in the core. Crystallization in gel provides an opportunity to mimic microgravity conditions and visualize the impurity depletion zone. Colorless, transparent apoferritin (M congruent to 450 KDa) crystals were grown in the presence of red holoferritin dimer as a microheterogeneous impurity (M congruent to 900 KDa) within agarose gel by counterdiffusion with Cd(2+) precipitant. Preferential trapping of dimers, (distribution coefficient K = 4 (exp 1,2)) results in weaker red color around the crystals grown in the left tube in the figure as compared to the control middle tube without crystals. The left and the middle tubes contain colored ferritin dimers, the right tube contains colored trimers. The meniscus in the left tube separate gel (below) and liquid solution containing Cd(2+) (above). Similar solutions, though without precipitants, were present on top of the middle and right tube allowing diffusion of dimers and trimers. The area of weaker color intensity around crystals directly demonstrates overlapped impurity depletion zones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call