Abstract
We demonstrate use of the Naval Ultra-Trace Isotope Laboratory's Universal Spectrometer (NAUTILUS) at the U.S. Naval Research Laboratory (NRL) to measure 236U directly from uranium-bearing particles free from molecular isobaric interferences. Particles with 235U enrichments in the range of 0.32% to 3.28% and 236U enrichments from no enrichment to 0.015% provided by the International Atomic Energy Agency (IAEA) were analyzed directly using the NAUTILUS. We report the experimental data here without correcting for molecular hydrides and/or applying any other background subtractions. The results from all samples agreed with the certified values within standard error save for the 236U composition of the IRMM 023, which suffered from a combination of insufficient particle sizes and sub-μmol mol-1 236U concentrations. We were able, however, to directly measure as low as three μmol mol-1 of 236U in individual particles regardless of the 235U concentration. Our results are comparable with Large Geometry Secondary Ion Mass Spectrometry (LG-SIMS) and serve as baseline for a more comprehensive comparison between LG-SIMS and the NAUTILUS in the future. Moreover, we demonstrate the ability of the NAUTILUS to generate raster ion images with the same ease as traditional LG-SIMS instruments. By combining our ability to measure 236U directly with raster ion imaging, we were able to detect a low intensity, small uranium-bearing particle in the presence of high molecular backgrounds for a non-ideal sample. This discovery could lead to more targeted and, therefore, less time intensive particle screening methodologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.