Abstract

This article presents an optimal direct torque control (DTC) strategy with variable flux for a switched reluctance motor using the improved linear active disturbance rejection control (LADRC) plus the hybrid optimization algorithm (HOA). First, the constant flux amplitude is substituted by the variable flux DTC (VF-DTC) to reduce the torque ripple. Then, the LADRC with the improved extended state observer applied in speed controller is utilized instead of the conventional PI control to improve the speed of the observer, antidisturbance ability, and robustness. Moreover, the HOA is employed to search for the optimal control parameters and acquire satisfactory dynamic performances. Finally, the optimal VF-DTC system is implemented on a 12/8 SRM. Simulation and experimental results are carried out to compare the performances of the conventional DTC, the VF-DTC with LADRC, the VF-DTC with PI using HOA, and the proposed optimal VF-DTC using HOA. The results show that the proposed control method has a faster speed response, superior antidisturbance ability, and lower torque ripples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call