Abstract

This paper studies and proposes the vector space decomposition-based direct torque control (DTC) scheme for the T-type neutral-point-clamping (T-NPC) three-level inverters-fed double-stator-winding permanent magnet synchronous machine (PMSM) drive, which provides an effective solution for high-power high-reliability applications. The key is to propose a simple but effective space vector modulation (SVM) for DTC of T-NPC double-stator-winding drives-based two-step voltage vector synthesis, in such a way that good dynamic response and harmonic performance are obtained. The closed-loop controllers on harmonic subspace are incorporated to suppress the possible harmonics induced from back electromotive force and unbalanced parameters in phase windings of electrical machine. Furthermore, a hybrid current control is proposed for fault-tolerant operation of the T-NPC double-stator-winding PMSM drives under one-phase open-circuit conditions. In the hybrid current controller, the healthy winding still uses the SVM-DTC control while the faulty winding uses the closed-loop current controller to track the optimized current references. Both simulation and experimental results are presented to verify the performance of the proposed switching strategies and control schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.