Abstract

A smooth torque control of switched reluctance motor (SRM) is essential to avoid speed fluctuations causing stability problems in vehicular applications. This can be accomplished by an appropriate motor design and/or use of direct control of torque in SRM. It is reported that high RMS current is required to minimise the torque ripple in the conventional direct torque and flux control (DTFC), thereby reducing the torque per ampere ratio. To overcome this issue, a new DTFC technique with improved torque per ampere ratio while minimising torque ripple in an SRM traction drive is presented. Results demonstrated that the proposed DTFC technique reduces torque ripple with enhanced torque per ampere. Finally, the performance of the proposed scheme is compared with conventional DTFC of a four-phase (8/6) SRM to show the improvement in the traction drive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call