Abstract

Determination of the mechanisms underlying the growth of tungsten fuzz is an important step towards mitigation of fuzz formation. Nanostructured tungsten was produced on resistively heated tungsten wires in a helicon plasma source (maximum flux of 2.5 × 1021 m−2 s−1). Asymmetry in the setup allows for investigation of temperature and flux effects in a single sample. An effort at elucidating the mechanism of formation was made by inspecting SEM micrographs of the nanostructured tungsten at successive fluence steps of helium ions up to a fluence of 1 × 1027 m−2. To create these micrographs a single tungsten sample was exposed to the plasma, removed and inspected with an SEM, and replaced into the plasma. The tungsten surface was marked in several locations so that each micrograph is centred within 200 nm of each previous micrograph. Pitting of the surface (diameter 9.5 ± 2.3 nm, fluence (5 ± 2) × 1025 m−2) followed by surface roughening (fluence (9 ± 2) × 1025 m−2) and tendril formation (diameter 30 ± 10 nm, fluence (2 ± 1) × 1026 m−2) is observed, providing evidence of bubble bursting as the mechanism for seeding the growth of the tungsten fuzz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.