Abstract

Zr-doped ceria nanotubes (ZrxCe1−xO2) were obtained in a high yield from a hydrothermal reaction in an aqueous solution of NaOH with Ce(NO3)3·6H2O and ZrO2 powder in a small proportion. The morphology and crystalline structure were characterized with X-ray diffraction, a scanning electron microscope, and a transmission electron microscope. Mechanisms for the growth of Zr-doped ceria nanotubes are proposed based on the Kirkendall effect; the formation of the tubular structure is strongly dependent on the precursor. This is the first report of a direct synthesis of cerium-oxide nanotubes in high yield. The surface area of the nanotubes is 76 m2/g and their average pore size is ∼52.2 nm. Catalytic measurements show that the nanotubes as synthesized are active for an oxygen-storage capacity and for ethanol reforming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.