Abstract

Direct synthesis of large-scale ternary boron carbonitride single-walled nanotubes (BCN-SWNTs) via a bias-assisted HFCVD process was presented. The BCN-SWNTs were grown over the powdery Fe-Mo/MgO catalyst by using CH4, B2H6, and ethylenediamine vapor as the reactant gases. As high as 16 atom % nitrogen can be incorporated within the nanotube shells, with the boron content in the range of 2-4 atom %. The ternary covalent bonding nature of the BCN-SWNTs was well characterized, and the B, C, and N elemental maps were clearly imaged by energy-filtered transmission electron microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.