Abstract

A finite element model for 3D random fiber networks was constructed to simulate deformation and failure behavior of networks with dynamic bonding/debonding properties. Such fiber networks are ubiquitous among many living systems, soft matters, bio-materials, and engineering materials (papers and non-woven). A key feature of this new network model is the fiber–fiber interaction model that is based on AFM measurements from our earlier study. A series of simulations have been performed to investigate strain localization behavior, strength statistics, in particular, the variations of strength, strain-to-failure and elastic modulus, and their size dependence. Other variables investigated are fiber geometries. The result showed that, in spite of its disordered structure, strength and elastic modulus of a fiber network varied very little statistically, as long as the average number of fibers in the simulated specimen and the degree of fiber orientation are kept constant. However, strain-to-failure showed very significant statistical variations, and thus more sensitivity to the disordered structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.