Abstract
The direct simulation Monte Carlo (DSMC) method of Bird is used to develop simple closed-form expressions for the mass flow rate and the pressure profile for the steady isothermal flow of an ideal gas through a microscale tube connecting two infinite reservoirs at different pressures but at the temperature of the tube wall. Gas molecules reflect from the tube wall according to the Maxwell model (a linear combination of specular and diffuse reflections at the wall temperature) with a unity or sub-unity value of the accommodation coefficient (the probability that molecules reflect diffusely from the wall). The DSMC-based expressions have four parameters. Two parameters are specified so that the mass flow rate reduces to the known expression in the free-molecular regime. One parameter was previously determined by comparison to DSMC simulations in the slip regime. The remaining parameter is determined by comparison to DSMC simulations for pressures spanning the transition regime with several values of the accommodation coefficient. The expressions for the mass flow rate and the pressure profile agree well with the DSMC simulations (rms and maximum differences of 2% and 5% for all cases examined), with other more complicated expressions and with recent experiments involving microscale tubes and channels for all flow regimes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have