Abstract

This article addresses the topic of frequency regulation of a single-area power system connected to an electric vehicle (EV) aggregator over a non-ideal communication network. It is considered that the command control action is received by the EV aggregator with constant delay and the power system includes uncertain parameters. Due to the presence of uncertainties and the delay term, the frequency regulation problem is non-convex and hard to solve. The present approaches in the literature convert the non-convex control design problem into a convex problem with a set of Linear Matrix Inequalities (LMIs), which is conservative and in many cases results infeasibility. In this paper, an innovative iterative algorithm, called direct search, is employed for the time-delayed system to design the unknown parameters of a pre-assumed controller. The controller choice is not limited and various controllers’ structures can be assumed. Without loss of generality, a proportional-integral (PI) controller is designed. The novel direct search algorithm can determine a feasible solution whenever at least one solution lays in the design space. Hence, by selecting a wide design space, we can anticipate that the PI controller guarantees closed-loop stability. Numerical simulations are carried out to demonstrate the performance of the developed controller compared to the state-of-the-art approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.