Abstract

Detecting the electric-field waveform of an optical pulse from the terahertz to the visible spectral domain provides a complete characterization of the average field waveform and holds great potential for quantum optics, time-domain (including frequency-comb) spectroscopy, high-harmonic generation, and attosecond science, to name a few. The field-resolved measurements can be performed using electro-optic sampling, where a laser pulse is characterized through an interaction with another pulse of a much shorter duration. The measured pulse train must consist of identical pulses, including their equal carrier-envelope phase (CEP). Due to the limited coverage of broadband laser gain media, creating CEP-stable pulse trains in the mid-infrared typically requires nonlinear frequency conversion, such as difference frequency generation, optical parametric amplification, or optical rectification. These techniques operate in a single-pass geometry, often limiting efficiency. In this work, we demonstrate field-resolved analysis of the pulses generated in a resonant system, an optical parametric oscillator (OPO). Due to the inherent feedback, this device exhibits a relatively high conversion efficiency at a given level of input power. By electro-optic sampling, we prove that a subharmonic OPO pumped with CEP-stable few-cycle fiber-laser pulses generates a CEP-stable mid-infrared output. The full amplitude and phase information renders dispersion control straightforward. We also confirm the existence of an exotic “flipping” state of the OPO directly in the time domain, where the electric field of consecutive pulses has the opposite sign.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call