Abstract

The direct regulation of testis androgen and progestin biosynthesis by neurohypophysial hormones was investigated in a primary culture of rat testis cells. Treatment with arginine vasotocin (AVT; 10(-6) M) over a 10-day period inhibited the human chorionic gonadotropin (hCG)-stimulated testosterone accumulation while enhancing hCG-stimulated progesterone accumulation. Furthermore, treatment with increasing doses (10(-11) - 10(-6) M) of AVT by itself led to dose-dependent increases in the accumulation of pregnenolone (ED50: 8.0 +/- 0.2 X 10(-9) M) and progesterone (ED50: 1.6 +/- 0.3 X 10(-8) M) but not testosterone. Under blockade of pregnenolone metabolism using cyanoketone and spironolactone, AVT, like hCG, stimulated pregnenolone accumulation with an ED50 dose of 5.8 +/- 0.3 X 10(-9) M. Similar effects were observed with several related neurohypophysial hormones, but not with nine unrelated peptides. AVT, arginine vasopressin, and lysine vasopressin were about 100-fold more potent than mesotocin, valitocin, and oxytocin. Pressor (but not antidiuretic or oxytocic)-selective agonists of the neurohypophysial hormones also exerted dose-dependent stimulation of pregnenolone accumulation. Potent pressor (but not oxytocic)-selective antagonistic analogs of the neurohypophysial hormones prevented the AVT-stimulated accumulation of pregnenolone. Thus, the neurohypophysial hormones may exert a direct stimulatory effect on testis pregnenolone and progesterone biosynthesis via putative, pressor-selective recognition sites, and this progestin-stimulatory activity may be partly due to stimulation of steroidogenic steps preceding pregnenolone formation. Since the effective doses of neurohypophysial hormones in vitro are higher than the serum hormone levels, the present results suggest an intratesticular paracrine role for these peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.