Abstract

A novel solvent extraction scheme was developed for the processing of Co-rich lithium-ion battery (LIB) leachate to a Ni–Co–Mn (NCM) sulfate mixture that can be directly used in the precursor synthesis of LIB cathodes. Conventional hydrometallurgical recycling of spent LIBs usually aims at separation of Li, Ni, Co, and Mn into pure fractions, which is simplified here. Operating pH and the number of extraction stages for each separation were evaluated from batch equilibrium experiments. Two continuous countercurrent extractions with bis(2-ethylhexyl) hydrogen phosphate (D2EHPA) and one with Cyanex 272 were studied in bench-scale mixer-settler equipment, and a Ni–Co–Mn solution with n(Ni):n(Co) = 14.16 and n(Ni):n(Mn) = 8.06 was obtained. The Ni:Co:Mn molar ratio in the NCM mixture can be adjusted to, for example, 8:1:1 using a Co-rich raffinate from the same process, and no additional transition metal salts are required for tuning the composition. Stripping raffinate containing 102.7 g L−1 Co at 99.8% relative purity was obtained from Cyanex 272 extraction. The main benefit of the process concept is that the solvent extraction separations can be operated with less stringent requirements than when producing pure metal salts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call